3.3.49 \(\int \frac {\tanh ^3(x)}{(a+b \tanh ^2(x))^{5/2}} \, dx\) [249]

3.3.49.1 Optimal result
3.3.49.2 Mathematica [C] (verified)
3.3.49.3 Rubi [A] (verified)
3.3.49.4 Maple [B] (verified)
3.3.49.5 Fricas [B] (verification not implemented)
3.3.49.6 Sympy [F]
3.3.49.7 Maxima [F]
3.3.49.8 Giac [B] (verification not implemented)
3.3.49.9 Mupad [B] (verification not implemented)

3.3.49.1 Optimal result

Integrand size = 17, antiderivative size = 74 \[ \int \frac {\tanh ^3(x)}{\left (a+b \tanh ^2(x)\right )^{5/2}} \, dx=\frac {\text {arctanh}\left (\frac {\sqrt {a+b \tanh ^2(x)}}{\sqrt {a+b}}\right )}{(a+b)^{5/2}}+\frac {a}{3 b (a+b) \left (a+b \tanh ^2(x)\right )^{3/2}}-\frac {1}{(a+b)^2 \sqrt {a+b \tanh ^2(x)}} \]

output
arctanh((a+b*tanh(x)^2)^(1/2)/(a+b)^(1/2))/(a+b)^(5/2)-1/(a+b)^2/(a+b*tanh 
(x)^2)^(1/2)+1/3*a/b/(a+b)/(a+b*tanh(x)^2)^(3/2)
 
3.3.49.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.10 (sec) , antiderivative size = 63, normalized size of antiderivative = 0.85 \[ \int \frac {\tanh ^3(x)}{\left (a+b \tanh ^2(x)\right )^{5/2}} \, dx=\frac {a (a+b)-3 b \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},1,\frac {1}{2},\frac {a+b \tanh ^2(x)}{a+b}\right ) \left (a+b \tanh ^2(x)\right )}{3 b (a+b)^2 \left (a+b \tanh ^2(x)\right )^{3/2}} \]

input
Integrate[Tanh[x]^3/(a + b*Tanh[x]^2)^(5/2),x]
 
output
(a*(a + b) - 3*b*Hypergeometric2F1[-1/2, 1, 1/2, (a + b*Tanh[x]^2)/(a + b) 
]*(a + b*Tanh[x]^2))/(3*b*(a + b)^2*(a + b*Tanh[x]^2)^(3/2))
 
3.3.49.3 Rubi [A] (verified)

Time = 0.31 (sec) , antiderivative size = 86, normalized size of antiderivative = 1.16, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.529, Rules used = {3042, 26, 4153, 26, 354, 87, 61, 73, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\tanh ^3(x)}{\left (a+b \tanh ^2(x)\right )^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {i \tan (i x)^3}{\left (a-b \tan (i x)^2\right )^{5/2}}dx\)

\(\Big \downarrow \) 26

\(\displaystyle i \int \frac {\tan (i x)^3}{\left (a-b \tan (i x)^2\right )^{5/2}}dx\)

\(\Big \downarrow \) 4153

\(\displaystyle i \int -\frac {i \tanh ^3(x)}{\left (1-\tanh ^2(x)\right ) \left (b \tanh ^2(x)+a\right )^{5/2}}d\tanh (x)\)

\(\Big \downarrow \) 26

\(\displaystyle \int \frac {\tanh ^3(x)}{\left (1-\tanh ^2(x)\right ) \left (a+b \tanh ^2(x)\right )^{5/2}}d\tanh (x)\)

\(\Big \downarrow \) 354

\(\displaystyle \frac {1}{2} \int \frac {\tanh ^2(x)}{\left (1-\tanh ^2(x)\right ) \left (b \tanh ^2(x)+a\right )^{5/2}}d\tanh ^2(x)\)

\(\Big \downarrow \) 87

\(\displaystyle \frac {1}{2} \left (\frac {\int \frac {1}{\left (1-\tanh ^2(x)\right ) \left (b \tanh ^2(x)+a\right )^{3/2}}d\tanh ^2(x)}{a+b}+\frac {2 a}{3 b (a+b) \left (a+b \tanh ^2(x)\right )^{3/2}}\right )\)

\(\Big \downarrow \) 61

\(\displaystyle \frac {1}{2} \left (\frac {\frac {\int \frac {1}{\left (1-\tanh ^2(x)\right ) \sqrt {b \tanh ^2(x)+a}}d\tanh ^2(x)}{a+b}-\frac {2}{(a+b) \sqrt {a+b \tanh ^2(x)}}}{a+b}+\frac {2 a}{3 b (a+b) \left (a+b \tanh ^2(x)\right )^{3/2}}\right )\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {1}{2} \left (\frac {\frac {2 \int \frac {1}{\frac {a+b}{b}-\frac {\tanh ^4(x)}{b}}d\sqrt {b \tanh ^2(x)+a}}{b (a+b)}-\frac {2}{(a+b) \sqrt {a+b \tanh ^2(x)}}}{a+b}+\frac {2 a}{3 b (a+b) \left (a+b \tanh ^2(x)\right )^{3/2}}\right )\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {1}{2} \left (\frac {\frac {2 \text {arctanh}\left (\frac {\sqrt {a+b \tanh ^2(x)}}{\sqrt {a+b}}\right )}{(a+b)^{3/2}}-\frac {2}{(a+b) \sqrt {a+b \tanh ^2(x)}}}{a+b}+\frac {2 a}{3 b (a+b) \left (a+b \tanh ^2(x)\right )^{3/2}}\right )\)

input
Int[Tanh[x]^3/(a + b*Tanh[x]^2)^(5/2),x]
 
output
((2*a)/(3*b*(a + b)*(a + b*Tanh[x]^2)^(3/2)) + ((2*ArcTanh[Sqrt[a + b*Tanh 
[x]^2]/Sqrt[a + b]])/(a + b)^(3/2) - 2/((a + b)*Sqrt[a + b*Tanh[x]^2]))/(a 
 + b))/2
 

3.3.49.3.1 Defintions of rubi rules used

rule 26
Int[(Complex[0, a_])*(Fx_), x_Symbol] :> Simp[(Complex[Identity[0], a])   I 
nt[Fx, x], x] /; FreeQ[a, x] && EqQ[a^2, 1]
 

rule 61
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^(n + 1)/((b*c - a*d)*(m + 1))), x] - Simp[d*(( 
m + n + 2)/((b*c - a*d)*(m + 1)))   Int[(a + b*x)^(m + 1)*(c + d*x)^n, x], 
x] /; FreeQ[{a, b, c, d, n}, x] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0 
] || (NeQ[c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d 
, m, n, x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 87
Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p 
_.), x_] :> Simp[(-(b*e - a*f))*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(f*(p 
+ 1)*(c*f - d*e))), x] - Simp[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p 
+ 1)))/(f*(p + 1)*(c*f - d*e))   Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] 
/; FreeQ[{a, b, c, d, e, f, n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || Intege 
rQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ[p, n]))))
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 354
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.), x_S 
ymbol] :> Simp[1/2   Subst[Int[x^((m - 1)/2)*(a + b*x)^p*(c + d*x)^q, x], x 
, x^2], x] /; FreeQ[{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && IntegerQ 
[(m - 1)/2]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4153
Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], 
 x]}, Simp[c*(ff/f)   Subst[Int[(d*ff*(x/c))^m*((a + b*(ff*x)^n)^p/(c^2 + f 
f^2*x^2)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, d, e, f, m, 
n, p}, x] && (IGtQ[p, 0] || EqQ[n, 2] || EqQ[n, 4] || (IntegerQ[p] && Ratio 
nalQ[n]))
 
3.3.49.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(434\) vs. \(2(62)=124\).

Time = 0.08 (sec) , antiderivative size = 435, normalized size of antiderivative = 5.88

method result size
derivativedivides \(\frac {1}{3 b \left (a +b \tanh \left (x \right )^{2}\right )^{\frac {3}{2}}}-\frac {1}{6 \left (a +b \right ) \left (b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b \right )^{\frac {3}{2}}}-\frac {b \tanh \left (x \right )}{6 \left (a +b \right ) a \left (b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b \right )^{\frac {3}{2}}}-\frac {b \tanh \left (x \right )}{3 \left (a +b \right ) a^{2} \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}-\frac {1}{2 \left (a +b \right )^{2} \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}-\frac {b \tanh \left (x \right )}{2 \left (a +b \right )^{2} a \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}+\frac {\ln \left (\frac {2 a +2 b -2 b \left (1+\tanh \left (x \right )\right )+2 \sqrt {a +b}\, \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}{1+\tanh \left (x \right )}\right )}{2 \left (a +b \right )^{\frac {5}{2}}}-\frac {1}{6 \left (a +b \right ) \left (b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b \right )^{\frac {3}{2}}}+\frac {b \tanh \left (x \right )}{6 \left (a +b \right ) a \left (b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b \right )^{\frac {3}{2}}}+\frac {b \tanh \left (x \right )}{3 \left (a +b \right ) a^{2} \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}-\frac {1}{2 \left (a +b \right )^{2} \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}+\frac {b \tanh \left (x \right )}{2 \left (a +b \right )^{2} a \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}+\frac {\ln \left (\frac {2 a +2 b +2 b \left (\tanh \left (x \right )-1\right )+2 \sqrt {a +b}\, \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}{\tanh \left (x \right )-1}\right )}{2 \left (a +b \right )^{\frac {5}{2}}}\) \(435\)
default \(\frac {1}{3 b \left (a +b \tanh \left (x \right )^{2}\right )^{\frac {3}{2}}}-\frac {1}{6 \left (a +b \right ) \left (b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b \right )^{\frac {3}{2}}}-\frac {b \tanh \left (x \right )}{6 \left (a +b \right ) a \left (b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b \right )^{\frac {3}{2}}}-\frac {b \tanh \left (x \right )}{3 \left (a +b \right ) a^{2} \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}-\frac {1}{2 \left (a +b \right )^{2} \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}-\frac {b \tanh \left (x \right )}{2 \left (a +b \right )^{2} a \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}+\frac {\ln \left (\frac {2 a +2 b -2 b \left (1+\tanh \left (x \right )\right )+2 \sqrt {a +b}\, \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}{1+\tanh \left (x \right )}\right )}{2 \left (a +b \right )^{\frac {5}{2}}}-\frac {1}{6 \left (a +b \right ) \left (b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b \right )^{\frac {3}{2}}}+\frac {b \tanh \left (x \right )}{6 \left (a +b \right ) a \left (b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b \right )^{\frac {3}{2}}}+\frac {b \tanh \left (x \right )}{3 \left (a +b \right ) a^{2} \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}-\frac {1}{2 \left (a +b \right )^{2} \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}+\frac {b \tanh \left (x \right )}{2 \left (a +b \right )^{2} a \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}+\frac {\ln \left (\frac {2 a +2 b +2 b \left (\tanh \left (x \right )-1\right )+2 \sqrt {a +b}\, \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}{\tanh \left (x \right )-1}\right )}{2 \left (a +b \right )^{\frac {5}{2}}}\) \(435\)

input
int(tanh(x)^3/(a+b*tanh(x)^2)^(5/2),x,method=_RETURNVERBOSE)
 
output
1/3/b/(a+b*tanh(x)^2)^(3/2)-1/6/(a+b)/(b*(1+tanh(x))^2-2*b*(1+tanh(x))+a+b 
)^(3/2)-1/6*b/(a+b)/a/(b*(1+tanh(x))^2-2*b*(1+tanh(x))+a+b)^(3/2)*tanh(x)- 
1/3*b/(a+b)/a^2/(b*(1+tanh(x))^2-2*b*(1+tanh(x))+a+b)^(1/2)*tanh(x)-1/2/(a 
+b)^2/(b*(1+tanh(x))^2-2*b*(1+tanh(x))+a+b)^(1/2)-1/2/(a+b)^2/a/(b*(1+tanh 
(x))^2-2*b*(1+tanh(x))+a+b)^(1/2)*b*tanh(x)+1/2/(a+b)^(5/2)*ln((2*a+2*b-2* 
b*(1+tanh(x))+2*(a+b)^(1/2)*(b*(1+tanh(x))^2-2*b*(1+tanh(x))+a+b)^(1/2))/( 
1+tanh(x)))-1/6/(a+b)/(b*(tanh(x)-1)^2+2*b*(tanh(x)-1)+a+b)^(3/2)+1/6*b/(a 
+b)/a/(b*(tanh(x)-1)^2+2*b*(tanh(x)-1)+a+b)^(3/2)*tanh(x)+1/3*b/(a+b)/a^2/ 
(b*(tanh(x)-1)^2+2*b*(tanh(x)-1)+a+b)^(1/2)*tanh(x)-1/2/(a+b)^2/(b*(tanh(x 
)-1)^2+2*b*(tanh(x)-1)+a+b)^(1/2)+1/2/(a+b)^2/a/(b*(tanh(x)-1)^2+2*b*(tanh 
(x)-1)+a+b)^(1/2)*b*tanh(x)+1/2/(a+b)^(5/2)*ln((2*a+2*b+2*b*(tanh(x)-1)+2* 
(a+b)^(1/2)*(b*(tanh(x)-1)^2+2*b*(tanh(x)-1)+a+b)^(1/2))/(tanh(x)-1))
 
3.3.49.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 3028 vs. \(2 (62) = 124\).

Time = 0.66 (sec) , antiderivative size = 6621, normalized size of antiderivative = 89.47 \[ \int \frac {\tanh ^3(x)}{\left (a+b \tanh ^2(x)\right )^{5/2}} \, dx=\text {Too large to display} \]

input
integrate(tanh(x)^3/(a+b*tanh(x)^2)^(5/2),x, algorithm="fricas")
 
output
Too large to include
 
3.3.49.6 Sympy [F]

\[ \int \frac {\tanh ^3(x)}{\left (a+b \tanh ^2(x)\right )^{5/2}} \, dx=\int \frac {\tanh ^{3}{\left (x \right )}}{\left (a + b \tanh ^{2}{\left (x \right )}\right )^{\frac {5}{2}}}\, dx \]

input
integrate(tanh(x)**3/(a+b*tanh(x)**2)**(5/2),x)
 
output
Integral(tanh(x)**3/(a + b*tanh(x)**2)**(5/2), x)
 
3.3.49.7 Maxima [F]

\[ \int \frac {\tanh ^3(x)}{\left (a+b \tanh ^2(x)\right )^{5/2}} \, dx=\int { \frac {\tanh \left (x\right )^{3}}{{\left (b \tanh \left (x\right )^{2} + a\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate(tanh(x)^3/(a+b*tanh(x)^2)^(5/2),x, algorithm="maxima")
 
output
integrate(tanh(x)^3/(b*tanh(x)^2 + a)^(5/2), x)
 
3.3.49.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 725 vs. \(2 (62) = 124\).

Time = 0.53 (sec) , antiderivative size = 725, normalized size of antiderivative = 9.80 \[ \int \frac {\tanh ^3(x)}{\left (a+b \tanh ^2(x)\right )^{5/2}} \, dx=\frac {{\left ({\left (\frac {{\left (a^{8} b + 2 \, a^{7} b^{2} - 5 \, a^{6} b^{3} - 20 \, a^{5} b^{4} - 25 \, a^{4} b^{5} - 14 \, a^{3} b^{6} - 3 \, a^{2} b^{7}\right )} e^{\left (2 \, x\right )}}{a^{8} b^{2} + 6 \, a^{7} b^{3} + 15 \, a^{6} b^{4} + 20 \, a^{5} b^{5} + 15 \, a^{4} b^{6} + 6 \, a^{3} b^{7} + a^{2} b^{8}} + \frac {3 \, {\left (a^{8} b + 2 \, a^{7} b^{2} - a^{6} b^{3} - 4 \, a^{5} b^{4} - a^{4} b^{5} + 2 \, a^{3} b^{6} + a^{2} b^{7}\right )}}{a^{8} b^{2} + 6 \, a^{7} b^{3} + 15 \, a^{6} b^{4} + 20 \, a^{5} b^{5} + 15 \, a^{4} b^{6} + 6 \, a^{3} b^{7} + a^{2} b^{8}}\right )} e^{\left (2 \, x\right )} + \frac {3 \, {\left (a^{8} b + 2 \, a^{7} b^{2} - a^{6} b^{3} - 4 \, a^{5} b^{4} - a^{4} b^{5} + 2 \, a^{3} b^{6} + a^{2} b^{7}\right )}}{a^{8} b^{2} + 6 \, a^{7} b^{3} + 15 \, a^{6} b^{4} + 20 \, a^{5} b^{5} + 15 \, a^{4} b^{6} + 6 \, a^{3} b^{7} + a^{2} b^{8}}\right )} e^{\left (2 \, x\right )} + \frac {a^{8} b + 2 \, a^{7} b^{2} - 5 \, a^{6} b^{3} - 20 \, a^{5} b^{4} - 25 \, a^{4} b^{5} - 14 \, a^{3} b^{6} - 3 \, a^{2} b^{7}}{a^{8} b^{2} + 6 \, a^{7} b^{3} + 15 \, a^{6} b^{4} + 20 \, a^{5} b^{5} + 15 \, a^{4} b^{6} + 6 \, a^{3} b^{7} + a^{2} b^{8}}}{3 \, {\left (a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b\right )}^{\frac {3}{2}}} - \frac {\log \left ({\left | -{\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )} {\left (a + b\right )} - \sqrt {a + b} {\left (a - b\right )} \right |}\right )}{2 \, {\left (a^{2} + 2 \, a b + b^{2}\right )} \sqrt {a + b}} + \frac {\log \left ({\left | -\sqrt {a + b} e^{\left (2 \, x\right )} + \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b} + \sqrt {a + b} \right |}\right )}{2 \, {\left (a^{2} + 2 \, a b + b^{2}\right )} \sqrt {a + b}} - \frac {\log \left ({\left | -\sqrt {a + b} e^{\left (2 \, x\right )} + \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b} - \sqrt {a + b} \right |}\right )}{2 \, {\left (a^{2} + 2 \, a b + b^{2}\right )} \sqrt {a + b}} \]

input
integrate(tanh(x)^3/(a+b*tanh(x)^2)^(5/2),x, algorithm="giac")
 
output
1/3*((((a^8*b + 2*a^7*b^2 - 5*a^6*b^3 - 20*a^5*b^4 - 25*a^4*b^5 - 14*a^3*b 
^6 - 3*a^2*b^7)*e^(2*x)/(a^8*b^2 + 6*a^7*b^3 + 15*a^6*b^4 + 20*a^5*b^5 + 1 
5*a^4*b^6 + 6*a^3*b^7 + a^2*b^8) + 3*(a^8*b + 2*a^7*b^2 - a^6*b^3 - 4*a^5* 
b^4 - a^4*b^5 + 2*a^3*b^6 + a^2*b^7)/(a^8*b^2 + 6*a^7*b^3 + 15*a^6*b^4 + 2 
0*a^5*b^5 + 15*a^4*b^6 + 6*a^3*b^7 + a^2*b^8))*e^(2*x) + 3*(a^8*b + 2*a^7* 
b^2 - a^6*b^3 - 4*a^5*b^4 - a^4*b^5 + 2*a^3*b^6 + a^2*b^7)/(a^8*b^2 + 6*a^ 
7*b^3 + 15*a^6*b^4 + 20*a^5*b^5 + 15*a^4*b^6 + 6*a^3*b^7 + a^2*b^8))*e^(2* 
x) + (a^8*b + 2*a^7*b^2 - 5*a^6*b^3 - 20*a^5*b^4 - 25*a^4*b^5 - 14*a^3*b^6 
 - 3*a^2*b^7)/(a^8*b^2 + 6*a^7*b^3 + 15*a^6*b^4 + 20*a^5*b^5 + 15*a^4*b^6 
+ 6*a^3*b^7 + a^2*b^8))/(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) 
 + a + b)^(3/2) - 1/2*log(abs(-(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e 
^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))*(a + b) - sqrt(a + b)*(a - b) 
))/((a^2 + 2*a*b + b^2)*sqrt(a + b)) + 1/2*log(abs(-sqrt(a + b)*e^(2*x) + 
sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b) + sqrt(a + 
 b)))/((a^2 + 2*a*b + b^2)*sqrt(a + b)) - 1/2*log(abs(-sqrt(a + b)*e^(2*x) 
 + sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b) - sqrt( 
a + b)))/((a^2 + 2*a*b + b^2)*sqrt(a + b))
 
3.3.49.9 Mupad [B] (verification not implemented)

Time = 4.16 (sec) , antiderivative size = 82, normalized size of antiderivative = 1.11 \[ \int \frac {\tanh ^3(x)}{\left (a+b \tanh ^2(x)\right )^{5/2}} \, dx=\frac {\mathrm {atanh}\left (\frac {\sqrt {b\,{\mathrm {tanh}\left (x\right )}^2+a}\,\left (2\,a^2+4\,a\,b+2\,b^2\right )}{2\,{\left (a+b\right )}^{5/2}}\right )}{{\left (a+b\right )}^{5/2}}+\frac {\frac {a}{3\,\left (a+b\right )}-\frac {b\,\left (b\,{\mathrm {tanh}\left (x\right )}^2+a\right )}{{\left (a+b\right )}^2}}{b\,{\left (b\,{\mathrm {tanh}\left (x\right )}^2+a\right )}^{3/2}} \]

input
int(tanh(x)^3/(a + b*tanh(x)^2)^(5/2),x)
 
output
atanh(((a + b*tanh(x)^2)^(1/2)*(4*a*b + 2*a^2 + 2*b^2))/(2*(a + b)^(5/2))) 
/(a + b)^(5/2) + (a/(3*(a + b)) - (b*(a + b*tanh(x)^2))/(a + b)^2)/(b*(a + 
 b*tanh(x)^2)^(3/2))